**ABSTRACT NOT FOR CITATION WITHOUT AUTHOR PERMISSION. The title, authors, and abstract for this completion report are provided below.  For a copy of the full completion report, please contact the author via e-mail at njohnson@usgs.govor via telephone at 989-734-4768 x128. Questions? Contact the GLFC via email at frp@glfc.org or via telephone at 734-662-3209.**





Nick Johnson1, Scott Miehs1, Jessica Barber2, Gale Bravener3, and Lisa O’Connor4


¹USGS Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI 49759


²US Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St., Marquette, MI 49855


³DFO, Sea Lamprey Control Centre, 1219 Queen Street, East Sault Ste. Marie, ON P6A 2E5


4DFO, Great Lakes Laboratory for Fisheries and Aquatic Sciences, 1219 Queen Street, East Sault Ste. Marie, ON P6A 2E5


December 2015




Controlling invasive fishes and restoring valued fishes are global problems with far reaching effects on ecosystems and societies.  If a technology existed to guide fish migration, both these problems could be addressed because in some cases invasive species could be guided into traps and in other cases valued fishes could be guided around barriers that fragment their habitat.  Here, we describe a novel system where a trap is paired with low voltage pulsed direct current electricity to catch sea lamprey Petromyzon marinus, a species that is highly invasive in the Laurentian Great Lakes, but is imperiled in most of Europe.  We first show in a free flowing stream that significantly more adult sea lamprey were captured in the trap when the electric lead was activated.  Then, we show in a different stream that the system was able to catch 60% of the migratory sea lamprey during the first season deployed and 75% during the second season.  Non-target mortality was rare and impacts to non-target migration were minimal; likely because pulsed direct current only needed to be activated at night (7 hours of each day).  The system was completely portable and the annual cost of the trapping system and its deployment in a stream 15 m wide was $4,800 (U.S. dollars, does not include time to remove and process captured fishes).  Use of the technology may substantially advance integrated control of sea lamprey, which threaten a fishery valued at 7 billion U.S. dollars annually, and may help restore sea lamprey populations in Europe where they are native, but imperiled.  Our conceptual model may be broadly applicable to other aquatic invasive or valued species worldwide.