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LAMPREY WOUNDING STANDARDIZATION
CONVERSION OF ATTACK RATE TO WOUNDING RATE AND MORTALITY

The model developed for the Salmonid/lLamprey workshop (Koonce et al
1982) only calculated attack rates of lamprey on various species and the
subsequent mortality. Assessment data for the Great Lakes, however, measures
wounds in various stages of healing. To make the lamprey attack model in the
workshop model compatible with assessment data, it is necessary to derive a
relationship between attack rates and observed wounding rates. The following
derivation is based on several assumptions:

1. The probabililty of death due to an attack is independent

of any other attack or attack history;

2. Attacks are independent events; and

3. The distribution of attacks per fish is Poisson.
Little evidence is available to judge the validity of the first two
assumptions. The third assumption appears consistent with available data
(see Appendix 1) and various theoretical notions associated with similar
host-parasitoid problems (cf. Smith 1968). The basic relationship between
attack rate is thus

exp(M)=1 + S*(1 - exp(A)), (1)

where M is the average number of wounds per fish that occur in a
year (coresponding to stages Al-A3), A is the mean number of
attacks per fish during the year, and S is the mean survival of
individuals in the population.  Survival, of course, is a
function of attack rate and the probability of surviving any
single attack (p):

S = exp(-A*(1-p)). (2)
Derivation of these relationships is given in more detail in Appendix 1.

Because equation 1 is non-linear, marking rates do not increase in
proportion to attack rates (Fig. 1). The extent of deviation from a 1:1
ratio of marking to attack rates, however, is a function of the probability
of surviving a single attack. This fundamental non-linearity between attack
and wounding rates results in an apparently non-linear relationship between
instantaneous mortality due to lamprey predation and marking rate (Fig. 2).
An attack survival probability of 0.25, in fact, seems to have the same
exponential form observed by Pycha (1980).

INTERPRETATION OF EXISTING DATA
Statistical Properties of Wound Data
One of the main concerns with existing wounding data is the adequacy of
sample sizes to detect important changes in wounding rate. Assuming that

wounds per fish is Poisson distributed, it is possible to calculate the
sample size required to detect, at a specified significance level, a given



.

change in wounding:

n = ((Za*sqr(2*Mc)+Zb*sqr(Mc+Mt))/(Mt—Mc))z

where Za is the standard normal Z deviate for the desired alpha
error (taken as 1.96 here, alpha/2 = 0.025), Zb is the Z deviate
for the beta error (taken as 1.64 here, beta = 0.05), Mc is the
observed wounding rate, and Mt is the wounding rate for a
specified difference.
The sample size required to detect a specified change is clearly a function
of the observed wounding rate. For a range of 50% to 200% change in wounding
rate, low wounding rates require higher sample sizes than higher wounding
rates (Fig. 3). As one might expect, this situation is reversed for fixed
changes in wounding rate (Fig. 4). Because wounding rates are ultimately
measures of the effectiveness of lamprey control, however, knowing the sample
sizes necessary to detect changes in survival of Lake Trout might be more
important. At low wounding rates, even a 5% decrease in survival can be
detected with fewer than 100 animals in the assessment catch (Fig. 5). For
higher wounding rates, larger sample sizes are required to detect the same
per cent changes in survival, but, in general for survival changes greater
than 10%, sample sizes of about 100 or less seem adequate. These assessments
are based on an assumed probability of surviving an attack of 0.5. Because
of the non-linear relationship between wounding rate and mortality, lower
probabilities of survival will require even lower sample sizes.

Interpretation of Wounding and Lake Trout Assessment Data

To aid understanding of the population implications of observable
wounding statistics, a steady-state version of the Salmonid/Lamprey Workshop
Model was created. This steady-state model only examined the relationship
among lamprey abundance, Lake Trout stocking, and typical assessment data.
Two assessment statistics were of particular concern: catch per unit effort
(CPUE) and mean length of the fish in the assessment catch. To emphasize the
changes in mean length, a reference length was calculated from the difference
between the average length in the catch and the length of age 5 Lake Trout
(size at entry to assessment gear). Both indices show a pronounced negative
association with wounding rates, but the actual values are very sensitive to
other sources of mortality (Figs. 6 and 7). This model is documented in
Appendix Z.

RECOMMENDATIONS

Based on these findings, the following recommendations seem appropriate
to lamprey wounding standardization:

1. The best statistic to report would be the average number of
wounds per fish or wounds per 100 fishj;

2. The wound stages to be included should represent current
year's wounds, certainly stages Al to AZ; and

3. Trends in effectiveness of Sea Lamprey control and Lake
Trout rehabilitation may be apparent in both catch per



effort and mean size statistics from the assessment catch,
but other sudden changes in mortality schedules of the Lake
Trout may make interpretation difficult. Because of a basic
symmetry in response of the model to reductions in lamprey
abundance or increases in Lake Trout stocking, however, the
relationship between wounding rate and either of these
statistics is a good measure of the overall effectiveness of
the program. These data should, therefore, be reported
together with historical trend analysis.
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Fig. 1. Effects of various survival probabilities on the relationship
between attack rate and observable marking rate. Solid line is for p = .25,
dotted line is for p = .48, dashed line is for p = .57, and dashed-dotted
line is for p = .62. The last three values represent the survival

probabilities of 5, 6, and 8 year old Lake Trout as calculated in the
Salmonid/Lamprey Workshop Model.
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Fig. 2. Effects of various survival probabilities on the relationship

between observable marking rate and instantaneous mortality.
each survival probabililty are the same as for Fig. 1.
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Fig. 3. Sample sizes required to detect various per cent changes in cbserved

wounding rate. Solid line is for an observed wounding rate of 0.03, dotted
line for 0.15, and dashed line for 0.40 wounds per fish.
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Fig. 4. Sample sizes required to detect various fixed changes in observed
wounding rate. Lines for the three wounding rates are the same as in Fig. 3.
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Fig. 5. Sample sizes required to detect various fractional changes in
survival of the Lake Trout from lamprey predation. Lines for the three
wounding rates are the same as in Fig. 3.
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Fig. 6. The effects of various levels of fishing efFort on the relationship

between mean reference size and wounding rate. The solid line is for an
effort of 0.3, dotted line for 0.5, and dashed line for 0.7 per yr.
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Fig. 7. The effects of various levels of fishing effort on the relationship

between catch per unit of effort in assessment gear and the observed wounding
rate. Lines for various effort levels are the same as in Fig. 6.
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Appendix 1. Relationship between Lamprey Wounding and Attack Rates.

If an attack by a lamprey has some likelihood of causing
mortality, wounding rates that are estimated from samples of living
animals will always be lower than the actual attack rates. 1In
approaching similar problems in host-parasite interactions, it seems best
to estimate the probability that an animal is not attacked (Smith 1968):

p=1-a/v,

where a is the effective search area of the parasite and V
is the area (or volume) in which the host occurs with the
parasite.
If there are N parasites searching independently, the probability that any
single host is not parasitized is

(1 - a/V)*(1 - a/V)*...*(1 - a/V), or

P

p=(1- a/v)".

This equation is a binomial and when expanded will yield not only the
probabililty of a host not being attacked, but also the probability that
it is attacked once, twice, three times, and so on. If the
probability of attack, a/V, is small and the number of parasites, N, is
large, then the binomial may be approximated with a Poisson. The
distribution of attacks per host would then be ’

p(i) = (g')*exp(-q)/i!,
where gq 1is the average number of attacks per host occuring
in some short time and i is the category of number of

attacks per host, and the probability of a host being
unattacked would be

p(0) = exp (-q).

To derive this model of the distribution of number of attacks per
host, two key assumptions must be made
1. The probability parasite attack must be independent of
any other attack; and
2. The time period for cbservation must be short enough to
insure that the probabililty of attack is small.
It follows from this derivation that wounding frequencies should alsoc be
distributed as a Poisson, and these assumptions may be tested with
appropriate data sets.

The Poisson wound freguency model may be tested in two ways. The
first procedure is a Chi-Square goodness-of-fit test, and the second is
a heterogeneity test based on the expected equality of mean and variance
of any Poisson distributed random variable. In this work, 1 used two
data sets to test the Poisson model: attack distributions from
experiments on white suckers by Farmer and Beamish (1973) and Lake
Trout wounding data from Cayuga Lake, New York (Eshenroder, personal



communication) . In the case of the white sucker data, the experimental
protocol of eight suckers with eight lampreys yields a theoretical

attack probability of 0.125. Such a high attack probability may

be in violation of assumption 2, but as indicated in Table Al, the Poisson
distribution for these data can not be rejected. In the second case, Lake
Trout wounding data in Table Al also can not be shown to be different from
Poisson, especially when considering the more sensitive heterogeneity
test. Given these results, therefore, the assumption of a Poisson model
for multiple wounds or attacks does not seem unwarranted.

To extend this analysis to derive a relationship between attack
rates and observed wounding rates requires some information on the
probability of survival of attacks. As Walters et al (1980) observed, this
is an area of some uncertainty. Based on the results of the
Salmonid/Lamprey Workshop (Koonce et al 1982), however, two
assumptions appear reasonable in the context wounding rates in the
Great Lakes:

1. The probability of survival of an attack is independent of
previous attacks; and
2. The probability of survival increases with the ratio of
Lake Trout size to lamprey size.
With these assumptions and the frequency distribution of attacks given a
mean number of attacks per host, the survival probability for a
specific size of host is

s = exp(-Q) + p*Q¥exp(-0) + (p*Q)Z¥exp(-Q)/2 + ...

which may be rewritten as

S

exp(-Q)*exp(p*Q), or

S

]

exp(-Q*(1-p)),

where Q is the average attacks per host and p is the
probability of surviving an attack.
The relationship between wounding rate and attack rate follows
directly by calculating the frequency of- unwounded hosts from the
frequency of unattacked hosts weighted for attack mortalities:

exp(m) = 1 + exp(@*p)*(1 - exp(-Q)).



Table Al. Summary of tests of Poisson model of wound frequency distribution.
Data for white sucker wounding are taken from Fig. 1. in Farmer and Beamish
(1973), and the Cayuga Lake data are for various wound stages (King and
Edsall 1979) for Lake Trout. Test statistics are either chi-square
goodness-of -fit or heterogeneity. The heterogeneity statistic is the ratio
of variance to mean times the degrees of freedom.

OBSERVED WOUNDS PER FISH STATISTICS
Data Chi-

Source 0 1 2 3 4 Mean Square Heterogeneity
Farmer and 78 92 51 18 5 1.10 0.29 222
Beamish (p>.1) (p>.1) .
Cayuga Lake

Al 270 80 9 0 - 0.27 1.49 327
(p>.1) (p>.1)

A2 269 71 17 2 - 0.31 3.38 396
(p>.1) (p>.1)

A3 259 84 11 5 - 0.34 7.89 392
(p>.05) (p>.1)

Al1-A3 798 235 37 7 - 0.31 2.99 1126

(p>.1) (p>.1)




Appendix 2. Documentation of Steady-state Lamprey Wounding Model

Three kinds of statistics are obtained from assessment samples of Lake
Trout in the Great Lakes: lamprey wounding frequency, average size, and
catch per unit effort. Interpretation of lamprey wounding frequencies
requires some understanding of the relationship of these statistics. As an
aid to this understanding a steady-state Sea Lamprey/Lake Trout model was
adapted from the Salmonid/Lamprey Workshop Model (Koonce et al 1982). Like
the workshop model, the steady-state model assumes that lamprey attacks may
be described with a multiple prey disc equation, but the steady-state model
has simpler prey selection. Only Lake Trout are considered as prey, and
probabilities of attack and mortality when attacked vary with age. To allow
for alternative mortality sources, fishing effort may be changed and each
age group has a characteristic catchabililty coefficient. Unlike the
workshop model, each age group of Lake Trout has a different attack rate.
Key parameters as a function of age are

Age Size (mm) p(i) q(i)
1 1524 0.001 0.001
2 2692 0.001 0.005
3 4039 0.01 0.05
4 5080 0.8 0.5
5 5867 0.9 1.0
6 6477 0.9 1.0
7 6934 0.95 1.0
8 7290 1.0 1.0
9 7544 1.0 1.0

10 7874 1.0 1.0

where p(i) is the probability of attack given an encounter and
q(i) is catchability (1/yr).
The probability of surviving an attack increases linearly with the size of
Lake Trout as in the workshop model.

The model is set up for use with SIMCON. Instead of simulation through
time, however, the model allows for the time variable, TI to increment
lamprey abundance. For each level of lamprey abundance, the model performs
a 15 year simulation to allow the Lake Trout abundance to reach a
steady-state. The model is listed in Table A2, and the Z variables are
defined in Table A3.
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e AZ. ﬂisting of the Steady-State Lamprey/Lake Trout Model.

OR TIME ZS TO NT
RESTORE IF TI > 0 GOTO 100
0 = 500:LI = 10000

FOR JI = 0 T0 15

IF JI > 0 GOTO 1000
11 = 1:12 = 10:1I3 =5

FOR I = I1 TO I2: READ P(I): NEXT
FOR I = I1 TO I2: READ TL(I): NEXT
FOR I = I1 TO I2: READ Q(I): NEXT
Z = .6:5 = 16

T(1) = S: FOR I = I1 + I1 TO I2:T(I) = T(I - 1) * Z: NEXT

170 L = LO + LI * TI

180
190

210

300
310
320
1000
2000
2100

2200

2250
2260

2300
2400
3000
3050

3100

3200

3300
3500
3600
4000

4010
4020
4030
4040
5000

E .7
Ml = 6E - 6:M3 = 3560:M4 = .292:M5 = 3.42200 NM = .2:K = 3.28E - 7
L2 = .33

FOR I = I1 TO I2:LC(I) = K * TL(I) * P(I):F(I) = E * Q(I)
sSF(I) = EXP ( - NM = F(I)):AH(I) = LC(I) * M1 * TL(I): NEXT

]

DATA .001,.001,.01,.8,.9,.9,.95,1,1,1
DATA 1524,2692,4039,5080,5867,6477,6934,7290,7544,7874
DATA .001,.005,.05,.5,1,1,1,1,1,1

REM START

KK = 0: FOR I = I1 TO I2:KK = KK + AH(I) * T(I): NEXT

KK = L / (1 + KK)

FOR I = I1 TO I2:LA(I)
* (J1 < M5) + (J1 >

LZ) * LC(I) * KK:J1 = TL(I) / M3:3J1 = J1 * M4
M5

Hou

SL(I) = EXP (LA(I) * (31 - 1)):LM(I) = LA(I) * (1 - J1)

Z0 = EXP ( - LA(L))

X = ?L(I):XM =720/ (X + (1 - X) * Z0):M(I) = - LOG (XM)
NEX P

T€I12) = T(I2) * SL(I2) * SF(I2) + T(I2 - I1) * SL(I2 - I1) * SF(I2 - I1)
NS = TL(I2) * T(I2):NL = T(I2):NM = T(I2) * M(I2)
:NA = LA(I2) * T(I12)
FOR % ; I2 - 11 70 I1 + I1 STEP - I1:3 =1 - I1:T(I) = T(J) * SF(J) *
SL(J
IF I > = I3 THEN NS = NS + TL(I) * T(I):NL = NL + T(I):
NM = NM + M(I) * T(I):NA = NA + LA(I) * T(I)
NEXT :T(I1) = S
IF NL < =0 THEN NL = 1
NEXT JI
Z(1,TI) = M(4):Z(2,TI) = M(5):Z(3,TI) = M(6):Z(4,T1) = M(7)
:2(5,TI) = M(8):Z(6,TI) = M(9):Z(7,TI) = M(10):Z(8,TI) =LM(5):Z(9,TI)
= LM(7):2(10,TI) = LM(9)

Z(11,TI) = NS / NL:Z(12,TI) = NM / NL

Z(13,T1) = LA(5):Z(14,TI) = LA(7):Z(15,TI) = LA(9)

2(16,TI) = L:Z(17,TI) = NL

7(18,TI) = NM:Z(19,TI) = NS / NL - TL(5):2(20,TI) = NA / NL

PRINT NA / NL;" ";NM / NL;" ";NS / NL



Table A3. Description of variables in Z array.of the steady-state
Lamprey/Lake Trout model.

Z variable

Description
Wound Frequency of 4 Year-0ld Lake Trout
Wound Frequency of 5 Year-0ld Lake Trout
Wound Frequency of 6 Year-0ld Lake Trout
Wound Frequency of 7 Year-0ld Lake Trout
Wound Frequency of 8 Year-0ld Lake Trout
Wound Frequency of 9 Year-0ld Lake Trout
Wound Frequency of 10 Year-0ld Lake Trout
Instantaneous Lamprey Mortality 5 Year-0ld Lake Trout
Instantaneous Lamprey Mortality 7 Year-0ld Lake Trout
Instantaneous Lamprey Mortality 9 Year-0ld Lake Trout
Average Size of Assessment Lake Trout
Mean Wound Frequency of of Assessment Lake Trout
Attack Frequency of 5 Year-0ld Lake Trout
Attack Frequency of 7 Year-0ld Lake Trout
Attack Frequency of 9 Year-0ld Lake Trout
Lamprey Abundance
Abundance of Assessment Lake Trout
Total Number of Wounds
Reference Size of Assessment Lake Trout
Mean Attack Frequency of of Assessment Lake Trout



